GitHub

您所在的位置:网站首页 esp32 gpio12 GitHub

GitHub

#GitHub| 来源: 网络整理| 查看: 265

AsyncWebServer_ESP32_SC_W6100 Library

arduino-library-badge GitHub release contributions welcome GitHub issues

Donate to my libraries using BuyMeACoffee

Table of contents Important Note Why do we need this AsyncWebServer_ESP32_SC_W6100 library Features Why Async is better Currently supported Boards Changelog Prerequisites Installation Use Arduino Library Manager Manual Install VS Code & PlatformIO Important things to remember Principles of operation The Async Web server Request Life Cycle Rewrites and how do they work Handlers and how do they work Responses and how do they work Template processing Request Variables Common Variables Headers GET, POST and FILE parameters JSON body handling with ArduinoJson Responses Redirect to another URL Basic response with HTTP Code Basic response with HTTP Code and extra headers Basic response with string content Basic response with string content and extra headers Respond with content coming from a Stream Respond with content coming from a Stream and extra headers Respond with content coming from a Stream containing templates Respond with content coming from a Stream containing templates and extra headers Respond with content using a callback Respond with content using a callback and extra headers Respond with content using a callback containing templates Respond with content using a callback containing templates and extra headers Chunked Response Chunked Response containing templates Print to response ArduinoJson Basic Response ArduinoJson Advanced Response Param Rewrite With Matching Using filters Bad Responses Respond with content using a callback without content length to HTTP/1.0 clients Async WebSocket Plugin Async WebSocket Event Methods for sending data to a socket client Direct access to web socket message buffer Limiting the number of web socket clients Async Event Source Plugin Setup Event Source on the server Setup Event Source in the browser Remove handlers and rewrites Setting up the server Setup global and class functions as request handlers Methods for controlling websocket connections Adding Default Headers Path variable How to connect W6100 to ESP32_S2/S3/C3 Examples 1. Async_AdvancedWebServer 2. Async_AdvancedWebServer_MemoryIssues_SendArduinoString 3. Async_AdvancedWebServer_MemoryIssues_Send_CString 4. Async_AdvancedWebServer_SendChunked 5. Async_HelloServer 6. Async_HelloServer2 7. Async_HttpBasicAuth 8. AsyncMultiWebServer_ESP32_W6100 9. Async_PostServer 10. Async_RegexPatterns_ESP32_W6100 11. AsyncSimpleServer_ESP32_W6100 12. AsyncWebServer_SendChunked 13. Async_WebSocketsServer 14. MQTTClient_Auth 15. MQTTClient_Basic 16. MQTT_ThingStream Example Async_AdvancedWebServer Debug Terminal Output Samples 1. AsyncMultiWebServer_ESP32_W6100 on ESP32S3_DEV with ESP32_S3_W6100 2. Async_AdvancedWebServer_MemoryIssues_Send_CString on ESP32S3_DEV with ESP32_S3_W6100 3. Async_AdvancedWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100 4. AsyncWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100 5. Async_WebSocketsServer on ESP32S3_DEV with ESP32_S3_W6100 6. Async_HTTPBasicAuth on ESP32S3_DEV with ESP32_S3_W6100 7. Async_AdvancedWebServer_SendChunked on ESP32S2_DEV with ESP32_S2_W6100 8. Async_AdvancedWebServer_SendChunked on ESP32C3_DEV with ESP32_C3_W6100 Debug Troubleshooting Issues TO DO DONE Contributions and Thanks Contributing License Copyright Important Note

The library permits using CString to save heap to send very large data.

Check the marvelleous PRs of @salasidis in Portenta_H7_AsyncWebServer library

request->send(200, textPlainStr, jsonChartDataCharStr); - Without using String Class - to save heap #8 All memmove() removed - string no longer destroyed #11

and these new examples

Async_AdvancedWebServer_MemoryIssues_Send_CString Async_AdvancedWebServer_MemoryIssues_SendArduinoString

If using Arduino String, to send a buffer around 30 KBytes, the used Max Heap is around 142,972 bytes

If using CString in regular memory, with the same 30 KBytes, the used Max Heap is around 113,396 bytes, saving around a buffer size (30 KBytes)

This is very critical in use-cases where sending very large data is necessary, without heap-allocation-error.

The traditional function used to send Arduino String is void send(int code, const String& contentType = String(), const String& content = String());

such as

request->send(200, textPlainStr, ArduinoStr);

The required additional HEAP is about 3 times of the String size

To use CString with copying while sending. Use function void send(int code, const String& contentType, const char *content, bool nonDetructiveSend = true); // RSMOD

such as

request->send(200, textPlainStr, cStr);

The required additional HEAP is also about 2 times of the CString size because of unnecessary copies of the CString in HEAP. Avoid this unefficient way.

To use CString without copying while sending. Use function void send(int code, const String& contentType, const char *content, bool nonDetructiveSend = true); // RSMOD

such as

request->send(200, textPlainStr, cStr, false);

The required additional HEAP is about 1 times of the CString size. This way is the best and most efficient way to use by avoiding of unnecessary copies of the CString in HEAP

Why do we need this AsyncWebServer_ESP32_SC_W6100 library Features

This library is based on, modified from:

Hristo Gochkov's ESPAsyncWebServer

to apply the better and faster asynchronous feature of the powerful ESPAsyncWebServer Library into (ESP32_S2/S3/C3 + LwIP W6100).

Why Async is better Using asynchronous network means that you can handle more than one connection at the same time You are called once the request is ready and parsed When you send the response, you are immediately ready to handle other connections while the server is taking care of sending the response in the background Speed is OMG Easy to use API, HTTP Basic and Digest MD5 Authentication (default), ChunkedResponse Easily extensible to handle any type of content Supports Continue 100 Async WebSocket plugin offering different locations without extra servers or ports Async EventSource (Server-Sent Events) plugin to send events to the browser URL Rewrite plugin for conditional and permanent url rewrites ServeStatic plugin that supports cache, Last-Modified, default index and more Simple template processing engine to handle templates Currently supported Boards ESP32_S3 boards using LwIP W6100 Ethernet ESP32_S2 boards using LwIP W6100 Ethernet ESP32_C3 boards using LwIP W6100 Ethernet ESP32S2_DEV

ESP32S3_DEV

ESP32C3_DEV

W6100

Prerequisites Arduino IDE 1.8.19+ for Arduino. GitHub release ESP32 Core 2.0.6+ for ESP32-based boards. ESP32 Latest Core Latest release AsyncTCP library v1.1.1+. Installation Use Arduino Library Manager

The best and easiest way is to use Arduino Library Manager. Search for AsyncWebServer_ESP32_SC_W6100, then select / install the latest version. You can also use this link arduino-library-badge for more detailed instructions.

Manual Install Navigate to AsyncWebServer_ESP32_SC_W6100 page. Download the latest release AsyncWebServer_ESP32_SC_W6100-main.zip. Extract the zip file to AsyncWebServer_ESP32_SC_W6100-main directory Copy the whole AsyncWebServer_ESP32_SC_W6100-main folder to Arduino libraries' directory such as ~/Arduino/libraries/. VS Code & PlatformIO: Install VS Code Install PlatformIO Install AsyncWebServer_ESP32_SC_W6100 library by using Library Manager. Search for AsyncWebServer_ESP32_SC_W6100 in Platform.io Author's Libraries Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File Important things to remember This is fully asynchronous server and as such does not run on the loop() thread. You can not use yield() or delay() or any function that uses them inside the callbacks The server is smart enough to know when to close the connection and free resources You can not send more than one response to a single request Principles of operation The Async Web server Listens for connections Wraps the new clients into Request Keeps track of clients and cleans memory Manages Rewrites and apply them on the request url Manages Handlers and attaches them to Requests Request Life Cycle TCP connection is received by the server The connection is wrapped inside Request object When the request head is received (type, url, get params, http version and host), the server goes through all Rewrites (in the order they were added) to rewrite the url and inject query parameters, next, it goes through all attached Handlers (in the order they were added) trying to find one that canHandle the given request. If none are found, the default(catch-all) handler is attached. The rest of the request is received, calling the handleUpload or handleBody methods of the Handler if they are needed (POST+File/Body) When the whole request is parsed, the result is given to the handleRequest method of the Handler and is ready to be responded to In the handleRequest method, to the Request is attached a Response object (see below) that will serve the response data back to the client When the Response is sent, the client is closed and freed from the memory Rewrites and how do they work The Rewrites are used to rewrite the request url and/or inject get parameters for a specific request url path. All Rewrites are evaluated on the request in the order they have been added to the server. The Rewrite will change the request url only if the request url (excluding get parameters) is fully match the rewrite url, and when the optional Filter callback return true. Setting a Filter to the Rewrite enables to control when to apply the rewrite, decision can be based on request url, http version, request host/port/target host, get parameters or the request client's localIP or remoteIP. The Rewrite can specify a target url with optional get parameters, e.g. /to-url?with=params Handlers and how do they work The Handlers are used for executing specific actions to particular requests One Handler instance can be attached to any request and lives together with the server Setting a Filter to the Handler enables to control when to apply the handler, decision can be based on request url, http version, request host/port/target host, get parameters or the request client's localIP or remoteIP. The canHandle method is used for handler specific control on whether the requests can be handled and for declaring any interesting headers that the Request should parse. Decision can be based on request method, request url, http version, request host/port/target host and get parameters Once a Handler is attached to given Request (canHandle returned true) that Handler takes care to receive any file/data upload and attach a Response once the Request has been fully parsed Handlers are evaluated in the order they are attached to the server. The canHandle is called only if the Filter that was set to the Handler return true. The first Handler that can handle the request is selected, not further Filter and canHandle are called. Responses and how do they work The Response objects are used to send the response data back to the client The Response object lives with the Request and is freed on end or disconnect Different techniques are used depending on the response type to send the data in packets returning back almost immediately and sending the next packet when this one is received. Any time in between is spent to run the user loop and handle other network packets Responding asynchronously is probably the most difficult thing for most to understand Many different options exist for the user to make responding a background task Template processing AsyncWebServer_ESP32_SC_W6100 contains simple template processing engine. Template processing can be added to most response types. Currently it supports only replacing template placeholders with actual values. No conditional processing, cycles, etc. Placeholders are delimited with % symbols. Like this: %TEMPLATE_PLACEHOLDER%. It works by extracting placeholder name from response text and passing it to user provided function which should return actual value to be used instead of placeholder. Since it's user provided function, it is possible for library users to implement conditional processing and cycles themselves. Since it's impossible to know the actual response size after template processing step in advance (and, therefore, to include it in response headers), the response becomes chunked. Request Variables Common Variables request->version(); // uint8_t: 0 = HTTP/1.0, 1 = HTTP/1.1 request->method(); // enum: HTTP_GET, HTTP_POST, HTTP_DELETE, HTTP_PUT, HTTP_PATCH, HTTP_HEAD, HTTP_OPTIONS request->url(); // String: URL of the request (not including host, port or GET parameters) request->host(); // String: The requested host (can be used for virtual hosting) request->contentType(); // String: ContentType of the request (not available in Handler::canHandle) request->contentLength(); // size_t: ContentLength of the request (not available in Handler::canHandle) request->multipart(); // bool: True if the request has content type "multipart" Headers //List all collected headers int headers = request->headers(); int i; for (i=0;igetHeader(i); Serial.printf("HEADER[%s]: %s\n", h->name().c_str(), h->value().c_str()); } //get specific header by name if (request->hasHeader("MyHeader")) { AsyncWebHeader* h = request->getHeader("MyHeader"); Serial.printf("MyHeader: %s\n", h->value().c_str()); } //List all collected headers (Compatibility) int headers = request->headers(); int i; for (i=0;iheaderName(i).c_str(), request->header(i).c_str()); } //get specific header by name (Compatibility) if (request->hasHeader("MyHeader")) { Serial.printf("MyHeader: %s\n", request->header("MyHeader").c_str()); } GET, POST and FILE parameters //List all parameters int params = request->params(); for (int i=0;igetParam(i); if (p->isFile()) { //p->isPost() is also true Serial.printf("FILE[%s]: %s, size: %u\n", p->name().c_str(), p->value().c_str(), p->size()); } else if (p->isPost()) { Serial.printf("POST[%s]: %s\n", p->name().c_str(), p->value().c_str()); } else { Serial.printf("GET[%s]: %s\n", p->name().c_str(), p->value().c_str()); } } //Check if GET parameter exists if (request->hasParam("download")) AsyncWebParameter* p = request->getParam("download"); //Check if POST (but not File) parameter exists if (request->hasParam("download", true)) AsyncWebParameter* p = request->getParam("download", true); //Check if FILE was uploaded if (request->hasParam("download", true, true)) AsyncWebParameter* p = request->getParam("download", true, true); //List all parameters (Compatibility) int args = request->args(); for (int i=0;iargName(i).c_str(), request->arg(i).c_str()); } //Check if parameter exists (Compatibility) if (request->hasArg("download")) String arg = request->arg("download"); JSON body handling with ArduinoJson

Endpoints which consume JSON can use a special handler to get ready to use JSON data in the request callback:

#include "AsyncJson.h" #include "ArduinoJson.h" AsyncCallbackJsonWebHandler* handler = new AsyncCallbackJsonWebHandler("/rest/endpoint", [](AsyncWebServerRequest *request, JsonVariant &json) { JsonObject& jsonObj = json.as(); // ... }); server.addHandler(handler); Responses Redirect to another URL //to local url request->redirect("/login"); //to external url request->redirect("http://esp8266.com"); Basic response with HTTP Code request->send(404); //Sends 404 File Not Found Basic response with HTTP Code and extra headers AsyncWebServerResponse *response = request->beginResponse(404); //Sends 404 File Not Found response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Basic response with string content request->send(200, "text/plain", "Hello World!"); Basic response with string content and extra headers AsyncWebServerResponse *response = request->beginResponse(200, "text/plain", "Hello World!"); response->addHeader("Server","AsyncWebServer"); request->send(response); Respond with content coming from a Stream //read 12 bytes from Serial and send them as Content Type text/plain request->send(Serial, "text/plain", 12); Respond with content coming from a Stream and extra headers //read 12 bytes from Serial and send them as Content Type text/plain AsyncWebServerResponse *response = request->beginResponse(Serial, "text/plain", 12); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Respond with content coming from a Stream containing templates String processor(const String& var) { if (var == "HELLO_FROM_TEMPLATE") return F("Hello world!"); return String(); } // ... //read 12 bytes from Serial and send them as Content Type text/plain request->send(Serial, "text/plain", 12, processor); Respond with content coming from a Stream containing templates and extra headers String processor(const String& var) { if (var == "HELLO_FROM_TEMPLATE") return F("Hello world!"); return String(); } // ... //read 12 bytes from Serial and send them as Content Type text/plain AsyncWebServerResponse *response = request->beginResponse(Serial, "text/plain", 12, processor); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Respond with content using a callback //send 128 bytes as plain text request->send("text/plain", 128, [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will not be asked for more bytes once the content length has been reached. //Keep in mind that you can not delay or yield waiting for more data! //Send what you currently have and you will be asked for more again return mySource.read(buffer, maxLen); }); Respond with content using a callback and extra headers //send 128 bytes as plain text AsyncWebServerResponse *response = request->beginResponse("text/plain", 128, [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will not be asked for more bytes once the content length has been reached. //Keep in mind that you can not delay or yield waiting for more data! //Send what you currently have and you will be asked for more again return mySource.read(buffer, maxLen); }); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Respond with content using a callback containing templates String processor(const String& var) { if (var == "HELLO_FROM_TEMPLATE") return F("Hello world!"); return String(); } // ... //send 128 bytes as plain text request->send("text/plain", 128, [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will not be asked for more bytes once the content length has been reached. //Keep in mind that you can not delay or yield waiting for more data! //Send what you currently have and you will be asked for more again return mySource.read(buffer, maxLen); }, processor); Respond with content using a callback containing templates and extra headers String processor(const String& var) { if (var == "HELLO_FROM_TEMPLATE") return F("Hello world!"); return String(); } // ... //send 128 bytes as plain text AsyncWebServerResponse *response = request->beginResponse("text/plain", 128, [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will not be asked for more bytes once the content length has been reached. //Keep in mind that you can not delay or yield waiting for more data! //Send what you currently have and you will be asked for more again return mySource.read(buffer, maxLen); }, processor); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Chunked Response

Used when content length is unknown. Works best if the client supports HTTP/1.1

AsyncWebServerResponse *response = request->beginChunkedResponse("text/plain", [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will be asked for more data until 0 is returned //Keep in mind that you can not delay or yield waiting for more data! return mySource.read(buffer, maxLen); }); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Chunked Response containing templates

Used when content length is unknown. Works best if the client supports HTTP/1.1

String processor(const String& var) { if (var == "HELLO_FROM_TEMPLATE") return F("Hello world!"); return String(); } // ... AsyncWebServerResponse *response = request->beginChunkedResponse("text/plain", [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //index equals the amount of bytes that have been already sent //You will be asked for more data until 0 is returned //Keep in mind that you can not delay or yield waiting for more data! return mySource.read(buffer, maxLen); }, processor); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); request->send(response); Print to response AsyncResponseStream *response = request->beginResponseStream("text/html"); response->addHeader("Server","AsyncWebServer_ESP32_SC_W6100"); response->printf("Webpage at %s", request->url().c_str()); response->print("Hello "); response->print(request->client()->remoteIP()); response->print(""); response->print("General"); response->print(""); response->printf("Version: HTTP/1.%u", request->version()); response->printf("Method: %s", request->methodToString()); response->printf("URL: %s", request->url().c_str()); response->printf("Host: %s", request->host().c_str()); response->printf("ContentType: %s", request->contentType().c_str()); response->printf("ContentLength: %u", request->contentLength()); response->printf("Multipart: %s", request->multipart()?"true":"false"); response->print(""); response->print("Headers"); response->print(""); int headers = request->headers(); for (int i=0;igetHeader(i); response->printf("%s: %s", h->name().c_str(), h->value().c_str()); } response->print(""); response->print("Parameters"); response->print(""); int params = request->params(); for (int i=0;igetParam(i); if (p->isFile()) { response->printf("FILE[%s]: %s, size: %u", p->name().c_str(), p->value().c_str(), p->size()); } else if (p->isPost()) { response->printf("POST[%s]: %s", p->name().c_str(), p->value().c_str()); } else { response->printf("GET[%s]: %s", p->name().c_str(), p->value().c_str()); } } response->print(""); response->print(""); //send the response last request->send(response); ArduinoJson Basic Response

This way of sending Json is great for when the result is below 4KB

#include "AsyncJson.h" #include "ArduinoJson.h" AsyncResponseStream *response = request->beginResponseStream("application/json"); DynamicJsonBuffer jsonBuffer; JsonObject &root = jsonBuffer.createObject(); root["heap"] = ESP.getFreeHeap(); root["ssid"] = WiFi.SSID(); root.printTo(*response); request->send(response); ArduinoJson Advanced Response

This response can handle really large Json objects (tested to 40KB)

There isn't any noticeable speed decrease for small results with the method above

Since ArduinoJson does not allow reading parts of the string, the whole Json has to be passed every time a chunks needs to be sent, which shows speed decrease proportional to the resulting json packets

#include "AsyncJson.h" #include "ArduinoJson.h" AsyncJsonResponse * response = new AsyncJsonResponse(); response->addHeader("Server","AsyncWebServer"); JsonObject& root = response->getRoot(); root["IP"] = Ethernet.localIP(); response->setLength(); request->send(response); Param Rewrite With Matching

It is possible to rewrite the request url with parameter matchg. Here is an example with one parameter: Rewrite for example "/radio/{frequence}" -> "/radio?f={frequence}"

class OneParamRewrite : public AsyncWebRewrite { protected: String _urlPrefix; int _paramIndex; String _paramsBackup; public: OneParamRewrite(const char* from, const char* to) : AsyncWebRewrite(from, to) { _paramIndex = _from.indexOf('{'); if ( _paramIndex >=0 && _from.endsWith("}")) { _urlPrefix = _from.substring(0, _paramIndex); int index = _params.indexOf('{'); if (index >= 0) { _params = _params.substring(0, index); } } else { _urlPrefix = _from; } _paramsBackup = _params; } bool match(AsyncWebServerRequest *request) override { if (request->url().startsWith(_urlPrefix)) { if (_paramIndex >= 0) { _params = _paramsBackup + request->url().substring(_paramIndex); } else { _params = _paramsBackup; } return true; } else { return false; } } };

Usage:

server.addRewrite( new OneParamRewrite("/radio/{frequence}", "/radio?f={frequence}") ); Using filters

Filters can be set to Rewrite or Handler in order to control when to apply the rewrite and consider the handler. A filter is a callback function that evaluates the request and return a boolean true to include the item or false to exclude it.

Bad Responses

Some responses are implemented, but you should not use them, because they do not conform to HTTP. The following example will lead to unclean close of the connection and more time wasted than providing the length of the content

Respond with content using a callback without content length to HTTP/1.0 clients //This is used as fallback for chunked responses to HTTP/1.0 Clients request->send("text/plain", 0, [](uint8_t *buffer, size_t maxLen, size_t index) -> size_t { //Write up to "maxLen" bytes into "buffer" and return the amount written. //You will be asked for more data until 0 is returned //Keep in mind that you can not delay or yield waiting for more data! return mySource.read(buffer, maxLen); }); Async WebSocket Plugin

The server includes a web socket plugin which lets you define different WebSocket locations to connect to without starting another listening service or using different port

Async WebSocket Event void onEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t *data, size_t len) { if (type == WS_EVT_CONNECT) { //client connected Serial.printf("ws[%s][%u] connect\n", server->url(), client->id()); client->printf("Hello Client %u :)", client->id()); client->ping(); } else if (type == WS_EVT_DISCONNECT) { //client disconnected Serial.printf("ws[%s][%u] disconnect: %u\n", server->url(), client->id()); } else if (type == WS_EVT_ERROR) { //error was received from the other end Serial.printf("ws[%s][%u] error(%u): %s\n", server->url(), client->id(), *((uint16_t*)arg), (char*)data); } else if (type == WS_EVT_PONG) { //pong message was received (in response to a ping request maybe) Serial.printf("ws[%s][%u] pong[%u]: %s\n", server->url(), client->id(), len, (len)?(char*)data:""); } else if (type == WS_EVT_DATA) { //data packet AwsFrameInfo * info = (AwsFrameInfo*)arg; if (info->final && info->index == 0 && info->len == len) { //the whole message is in a single frame and we got all of it's data Serial.printf("ws[%s][%u] %s-message[%llu]: ", server->url(), client->id(), (info->opcode == WS_TEXT)?"text":"binary", info->len); if (info->opcode == WS_TEXT) { data[len] = 0; Serial.printf("%s\n", (char*)data); } else { for (size_t i=0; i < info->len; i++) { Serial.printf("%02x ", data[i]); } Serial.printf("\n"); } if (info->opcode == WS_TEXT) client->text("I got your text message"); else client->binary("I got your binary message"); } else { //message is comprised of multiple frames or the frame is split into multiple packets if (info->index == 0) { if (info->num == 0) Serial.printf("ws[%s][%u] %s-message start\n", server->url(), client->id(), (info->message_opcode == WS_TEXT)?"text":"binary"); Serial.printf("ws[%s][%u] frame[%u] start[%llu]\n", server->url(), client->id(), info->num, info->len); } Serial.printf("ws[%s][%u] frame[%u] %s[%llu - %llu]: ", server->url(), client->id(), info->num, (info->message_opcode == WS_TEXT)?"text":"binary", info->index, info->index + len); if (info->message_opcode == WS_TEXT) { data[len] = 0; Serial.printf("%s\n", (char*)data); } else { for (size_t i=0; i < len; i++){ Serial.printf("%02x ", data[i]); } Serial.printf("\n"); } if ((info->index + len) == info->len) { Serial.printf("ws[%s][%u] frame[%u] end[%llu]\n", server->url(), client->id(), info->num, info->len); if (info->final) { Serial.printf("ws[%s][%u] %s-message end\n", server->url(), client->id(), (info->message_opcode == WS_TEXT)?"text":"binary"); if (info->message_opcode == WS_TEXT) client->text("I got your text message"); else client->binary("I got your binary message"); } } } } } Methods for sending data to a socket client //Server methods AsyncWebSocket ws("/ws"); //printf to a client ws.printf((uint32_t)client_id, arguments...); //printf to all clients ws.printfAll(arguments...); //send text to a client ws.text((uint32_t)client_id, (char*)text); ws.text((uint32_t)client_id, (uint8_t*)text, (size_t)len); //send text to all clients ws.textAll((char*)text); ws.textAll((uint8_t*)text, (size_t)len); //send binary to a client ws.binary((uint32_t)client_id, (char*)binary); ws.binary((uint32_t)client_id, (uint8_t*)binary, (size_t)len); ws.binary((uint32_t)client_id, flash_binary, 4); //send binary to all clients ws.binaryAll((char*)binary); ws.binaryAll((uint8_t*)binary, (size_t)len); //HTTP Authenticate before switch to Websocket protocol ws.setAuthentication("user", "pass"); //client methods AsyncWebSocketClient * client; //printf client->printf(arguments...); //send text client->text((char*)text); client->text((uint8_t*)text, (size_t)len); //send binary client->binary((char*)binary); client->binary((uint8_t*)binary, (size_t)len); Direct access to web socket message buffer

When sending a web socket message using the above methods a buffer is created. Under certain circumstances you might want to manipulate or populate this buffer directly from your application, for example to prevent unnecessary duplications of the data. This example below shows how to create a buffer and print data to it from an ArduinoJson object then send it.

void sendDataWs(AsyncWebSocketClient * client) { DynamicJsonBuffer jsonBuffer; JsonObject& root = jsonBuffer.createObject(); root["a"] = "abc"; root["b"] = "abcd"; root["c"] = "abcde"; root["d"] = "abcdef"; root["e"] = "abcdefg"; size_t len = rooasureLength(); AsyncWebSocketMessageBuffer * buffer = ws.makeBuffer(len); // creates a buffer (len + 1) for you. if (buffer) { root.printTo((char *)buffer->get(), len + 1); if (client) { client->text(buffer); } else { ws.textAll(buffer); } } } Limiting the number of web socket clients

Browsers sometimes do not correctly close the websocket connection, even when the close() function is called in javascript. This will eventually exhaust the web server's resources and will cause the server to crash. Periodically calling the cleanClients() function from the main loop() function limits the number of clients by closing the oldest client when the maximum number of clients has been exceeded. This can called be every cycle, however, if you wish to use less power, then calling as infrequently as once per second is sufficient.

void loop() { ws.cleanupClients(); } Async Event Source Plugin

The server includes EventSource (Server-Sent Events) plugin which can be used to send short text events to the browser. Difference between EventSource and WebSockets is that EventSource is single direction, text-only protocol.

Setup Event Source on the server AsyncWebServer server(80); AsyncEventSource events("/events"); void setup() { // setup ...... events.onConnect([](AsyncEventSourceClient *client) { if (client->lastId()) { Serial.printf("Client reconnected! Last message ID that it got is: %u\n", client->lastId()); } //send event with message "hello!", id current millis // and set reconnect delay to 1 second client->send("hello!",NULL,millis(),1000); }); //HTTP Basic authentication events.setAuthentication("user", "pass"); server.addHandler(&events); // setup ...... } void loop() { if (eventTriggered) { // your logic here //send event "myevent" events.send("my event content","myevent",millis()); } } Setup Event Source in the browser if (!!window.EventSource) { var source = new EventSource('/events'); source.addEventListener('open', function(e) { console.log("Events Connected"); }, false); source.addEventListener('error', function(e) { if (e.target.readyState != EventSource.OPEN) { console.log("Events Disconnected"); } }, false); source.addEventListener('message', function(e) { console.log("message", e.data); }, false); source.addEventListener('myevent', function(e) { console.log("myevent", e.data); }, false); } Remove handlers and rewrites

Server goes through handlers in same order as they were added. You can't simple add handler with same path to override them. To remove handler:

// save callback for particular URL path auto handler = server.on("/some/path", [](AsyncWebServerRequest *request) { //do something useful }); // when you don't need handler anymore remove it server.removeHandler(&handler); // same with rewrites server.removeRewrite(&someRewrite); server.onNotFound([](AsyncWebServerRequest *request) { request->send(404); }); // remove server.onNotFound handler server.onNotFound(NULL); // remove all rewrites, handlers and onNotFound/onFileUpload/onRequestBody callbacks server.reset(); Setting up the server #if !( defined(ESP32) ) #error This code is designed for (ESP32_S2/3, ESP32_C3 + W6100) to run on ESP32 platform! Please check your Tools->Board setting. #endif #include #define _ASYNC_WEBSERVER_LOGLEVEL_ 2 // Enter a MAC address and IP address for your controller below. #define NUMBER_OF_MAC 20 byte mac[][NUMBER_OF_MAC] = { { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x01 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x02 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x03 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x04 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x05 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x06 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x07 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x08 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x09 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0A }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0B }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0C }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0D }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0E }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0F }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x10 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x11 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x12 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x13 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x14 }, }; // Select the IP address according to your local network IPAddress myIP(192, 168, 2, 232); IPAddress myGW(192, 168, 2, 1); IPAddress mySN(255, 255, 255, 0); // Google DNS Server IP IPAddress myDNS(8, 8, 8, 8); ////////////////////////////////////////////////////////// // For W6100 & ESP32-S3 // Optional values to override default settings // Don't change unless you know what you're doing //#define ETH_SPI_HOST SPI3_HOST //#define SPI_CLOCK_MHZ 25 // Must connect INT to GPIOxx or not working //#define INT_GPIO 4 //#define MISO_GPIO 13 //#define MOSI_GPIO 11 //#define SCK_GPIO 12 //#define CS_GPIO 10 ////////////////////////////////////////////////////////// #include #include AsyncWebServer server(80); void handleRoot(AsyncWebServerRequest *request) { request->send(200, "text/plain", String("Hello from Async_HelloServer on ") + ARDUINO_BOARD ); } void handleNotFound(AsyncWebServerRequest *request) { String message = "File Not Found\n\n"; message += "URI: "; //message += server.uri(); message += request->url(); message += "\nMethod: "; message += (request->method() == HTTP_GET) ? "GET" : "POST"; message += "\nArguments: "; message += request->args(); message += "\n"; for (uint8_t i = 0; i < request->args(); i++) { message += " " + request->argName(i) + ": " + request->arg(i) + "\n"; } request->send(404, "text/plain", message); } void setup() { Serial.begin(115200); while (!Serial && millis() < 5000); delay(500); Serial.print(F("\nStart Async_HelloServer on ")); Serial.print(ARDUINO_BOARD); Serial.print(F(" with ")); Serial.println(SHIELD_TYPE); Serial.println(ASYNC_WEBSERVER_ESP32_SC_W6100_VERSION); AWS_LOGWARN(F("Default SPI pinout:")); AWS_LOGWARN1(F("SPI_HOST:"), ETH_SPI_HOST); AWS_LOGWARN1(F("MOSI:"), MOSI_GPIO); AWS_LOGWARN1(F("MISO:"), MISO_GPIO); AWS_LOGWARN1(F("SCK:"), SCK_GPIO); AWS_LOGWARN1(F("CS:"), CS_GPIO); AWS_LOGWARN1(F("INT:"), INT_GPIO); AWS_LOGWARN1(F("SPI Clock (MHz):"), SPI_CLOCK_MHZ); AWS_LOGWARN(F("=========================")); /////////////////////////////////// // To be called before ETH.begin() ESP32_W6100_onEvent(); // start the ethernet connection and the server: // Use DHCP dynamic IP and random mac //bool begin(int MISO_GPIO, int MOSI_GPIO, int SCLK_GPIO, int CS_GPIO, int INT_GPIO, int SPI_CLOCK_MHZ, // int SPI_HOST, uint8_t *W6100_Mac = W6100_Default_Mac); ETH.begin( MISO_GPIO, MOSI_GPIO, SCK_GPIO, CS_GPIO, INT_GPIO, SPI_CLOCK_MHZ, ETH_SPI_HOST ); //ETH.begin( MISO_GPIO, MOSI_GPIO, SCK_GPIO, CS_GPIO, INT_GPIO, SPI_CLOCK_MHZ, ETH_SPI_HOST, mac[millis() % NUMBER_OF_MAC] ); // Static IP, leave without this line to get IP via DHCP //bool config(IPAddress local_ip, IPAddress gateway, IPAddress subnet, IPAddress dns1 = 0, IPAddress dns2 = 0); //ETH.config(myIP, myGW, mySN, myDNS); ESP32_W6100_waitForConnect(); /////////////////////////////////// server.on("/", HTTP_GET, [](AsyncWebServerRequest * request) { handleRoot(request); }); server.on("/inline", [](AsyncWebServerRequest * request) { request->send(200, "text/plain", "This works as well"); }); server.onNotFound(handleNotFound); server.begin(); Serial.print(F("HTTP EthernetWebServer is @ IP : ")); Serial.println(ETH.localIP()); } void loop() { } Setup global and class functions as request handlers #include #include ... void handleRequest(AsyncWebServerRequest *request){} class WebClass { public : AsyncWebServer classWebServer = AsyncWebServer(81); WebClass(){}; void classRequest (AsyncWebServerRequest *request){} void begin() { // attach global request handler classWebServer.on("/example", HTTP_ANY, handleRequest); // attach class request handler classWebServer.on("/example", HTTP_ANY, std::bind(&WebClass::classRequest, this, std::placeholders::_1)); } }; AsyncWebServer globalWebServer(80); WebClass webClassInstance; void setup() { // attach global request handler globalWebServer.on("/example", HTTP_ANY, handleRequest); // attach class request handler globalWebServer.on("/example", HTTP_ANY, std::bind(&WebClass::classRequest, webClassInstance, std::placeholders::_1)); } void loop() { } Methods for controlling websocket connections // Disable client connections if it was activated if ( ws.enabled() ) ws.enable(false); // enable client connections if it was disabled if ( !ws.enabled() ) ws.enable(true); Adding Default Headers

In some cases, such as when working with CORS, or with some sort of custom authentication system, you might need to define a header that should get added to all responses (including static, websocket and EventSource). The DefaultHeaders singleton allows you to do this.

Example:

DefaultHeaders::Instance().addHeader("Access-Control-Allow-Origin", "*"); webServer.begin();

NOTE: You will still need to respond to the OPTIONS method for CORS pre-flight in most cases. (unless you are only using GET)

This is one option:

webServer.onNotFound([](AsyncWebServerRequest *request) { if (request->method() == HTTP_OPTIONS) { request->send(200); } else { request->send(404); } }); Path variable

With path variable you can create a custom regex rule for a specific parameter in a route. For example we want a sensorId parameter in a route rule to match only a integer.

server.on("^\\/sensor\\/([0-9]+)$", HTTP_GET, [] (AsyncWebServerRequest *request) { String sensorId = request->pathArg(0); });

NOTE: All regex patterns starts with ^ and ends with $

To enable the Path variable support, you have to define the buildflag -DASYNCWEBSERVER_REGEX.

For Arduino IDE create/update platform.local.txt:

Windows: C:\Users(username)\AppData\Local\Arduino15\packages\{espxxxx}\hardware\espxxxx\{version}\platform.local.txt

Linux: ~/.arduino15/packages/{espxxxx}/hardware/{espxxxx}/{version}/platform.local.txt

Add/Update the following line:

compiler.cpp.extra_flags=-DDASYNCWEBSERVER_REGEX

For platformio modify platformio.ini:

[env:myboard] build_flags = -DASYNCWEBSERVER_REGEX

NOTE: By enabling ASYNCWEBSERVER_REGEX, will be included. This will add an 100k to your binary.

How to connect W6100 to ESP32_S2/S3/C3

You can change the INT pin to another one. Default is GPIO4

// Must connect INT to GPIOxx or not working #define INT_GPIO 4 W6100

ESP32S3_DEV

W6100 ESP32_S3 MOSI GPIO11 MISO GPIO13 SCK GPIO12 SS GPIO10 INT GPIO4 RST RST GND GND 3.3V 3.3V ESP32S2_DEV

ENC28J60 ESP32_S2 MOSI GPIO35 MISO GPIO37 SCK GPIO36 SS GPIO34 INT GPIO4 RST RST GND GND 3.3V 3.3V ESP32C3_DEV

W6100 ESP32_C3 MOSI GPIO6 MISO GPIO5 SCK GPIO4 SS GPIO7 INT GPIO10 RST RST GND GND 3.3V 3.3V Examples Async_AdvancedWebServer Async_AdvancedWebServer_MemoryIssues_SendArduinoString Async_AdvancedWebServer_MemoryIssues_Send_CString Async_AdvancedWebServer_SendChunked Async_HelloServer Async_HelloServer2 Async_HttpBasicAuth AsyncMultiWebServer_ESP32_W6100 Async_PostServer Async_RegexPatterns_ESP32_W6100 AsyncSimpleServer_ESP32_W6100 AsyncWebServer_SendChunked Async_WebSocketsServer MQTTClient_Auth MQTTClient_Basic MQTT_ThingStream Example Async_AdvancedWebServer

AsyncWebServer_ESP32_SC_W6100/examples/Async_AdvancedWebServer/Async_AdvancedWebServer.ino

Lines 40 to 268 in db52447

#if !( defined(ESP32) ) #error This code is designed for (ESP32_S2/3, ESP32_C3 + W6100) to run on ESP32 platform! Please check your Tools->Board setting. #endif #include #define _ASYNC_WEBSERVER_LOGLEVEL_ 2 // Enter a MAC address and IP address for your controller below. #define NUMBER_OF_MAC 20 byte mac[][NUMBER_OF_MAC] = { { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x01 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x02 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x03 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x04 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x05 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x06 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x07 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x08 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x09 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0A }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0B }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0C }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0D }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0E }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0F }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x10 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x11 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x12 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x13 }, { 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x14 }, }; // Select the IP address according to your local network IPAddress myIP(192, 168, 2, 232); IPAddress myGW(192, 168, 2, 1); IPAddress mySN(255, 255, 255, 0); // Google DNS Server IP IPAddress myDNS(8, 8, 8, 8); ////////////////////////////////////////////////////////// // For W6100 & ESP32-S3 // Optional values to override default settings // Don't change unless you know what you're doing //#define ETH_SPI_HOST SPI3_HOST //#define SPI_CLOCK_MHZ 25 // Must connect INT to GPIOxx or not working //#define INT_GPIO 4 //#define MISO_GPIO 13 //#define MOSI_GPIO 11 //#define SCK_GPIO 12 //#define CS_GPIO 10 // For ESP32_C3 // Optional values to override default settings // Don't change unless you know what you're doing //#define ETH_SPI_HOST SPI2_HOST //#define SPI_CLOCK_MHZ 25 // Must connect INT to GPIOxx or not working //#define INT_GPIO 10 //#define MISO_GPIO 5 //#define MOSI_GPIO 6 //#define SCK_GPIO 4 //#define CS_GPIO 7 ////////////////////////////////////////////////////////// #include #include AsyncWebServer server(80); int reqCount = 0; // number of requests received void handleRoot(AsyncWebServerRequest *request) { #define BUFFER_SIZE 400 char temp[BUFFER_SIZE]; int sec = millis() / 1000; int min = sec / 60; int hr = min / 60; int day = hr / 24; snprintf(temp, BUFFER_SIZE - 1, "\ \ \ AsyncWebServer-%s\ \ body { background-color: #cccccc; font-family: Arial, Helvetica, Sans-Serif; Color: #000088; }\ \ \ \ AsyncWebServer_ESP32_SC_W6100!\ running on %s\

Uptime: %d d %02d:%02d:%02d

\ \ \ ", ARDUINO_BOARD, ARDUINO_BOARD, day, hr % 24, min % 60, sec % 60); request->send(200, "text/html", temp); } void handleNotFound(AsyncWebServerRequest *request) { String message = "File Not Found\n\n"; message += "URI: "; message += request->url(); message += "\nMethod: "; message += (request->method() == HTTP_GET) ? "GET" : "POST"; message += "\nArguments: "; message += request->args(); message += "\n"; for (uint8_t i = 0; i < request->args(); i++) { message += " " + request->argName(i) + ": " + request->arg(i) + "\n"; } request->send(404, "text/plain", message); } void drawGraph(AsyncWebServerRequest *request) { String out; out.reserve(3000); char temp[70]; out += "\n"; out += "\n"; out += "\n"; int y = rand() % 130; for (int x = 10; x < 300; x += 10) { int y2 = rand() % 130; sprintf(temp, "\n", x, 140 - y, x + 10, 140 - y2); out += temp; y = y2; } out += "\n\n"; request->send(200, "image/svg+xml", out); } void setup() { Serial.begin(115200); while (!Serial && millis() < 5000); delay(500); Serial.print(F("\nStart Async_AdvancedWebServer on ")); Serial.print(ARDUINO_BOARD); Serial.print(F(" with ")); Serial.println(SHIELD_TYPE); Serial.println(ASYNC_WEBSERVER_ESP32_SC_W6100_VERSION); AWS_LOGWARN(F("Default SPI pinout:")); AWS_LOGWARN1(F("SPI_HOST:"), ETH_SPI_HOST); AWS_LOGWARN1(F("MOSI:"), MOSI_GPIO); AWS_LOGWARN1(F("MISO:"), MISO_GPIO); AWS_LOGWARN1(F("SCK:"), SCK_GPIO); AWS_LOGWARN1(F("CS:"), CS_GPIO); AWS_LOGWARN1(F("INT:"), INT_GPIO); AWS_LOGWARN1(F("SPI Clock (MHz):"), SPI_CLOCK_MHZ); AWS_LOGWARN(F("=========================")); /////////////////////////////////// // To be called before ETH.begin() ESP32_W6100_onEvent(); // start the ethernet connection and the server: // Use DHCP dynamic IP and random mac //bool begin(int MISO_GPIO, int MOSI_GPIO, int SCLK_GPIO, int CS_GPIO, int INT_GPIO, int SPI_CLOCK_MHZ, // int SPI_HOST, uint8_t *W6100_Mac = W6100_Default_Mac); ETH.begin( MISO_GPIO, MOSI_GPIO, SCK_GPIO, CS_GPIO, INT_GPIO, SPI_CLOCK_MHZ, ETH_SPI_HOST ); //ETH.begin( MISO_GPIO, MOSI_GPIO, SCK_GPIO, CS_GPIO, INT_GPIO, SPI_CLOCK_MHZ, ETH_SPI_HOST, mac[millis() % NUMBER_OF_MAC] ); // Static IP, leave without this line to get IP via DHCP //bool config(IPAddress local_ip, IPAddress gateway, IPAddress subnet, IPAddress dns1 = 0, IPAddress dns2 = 0); //ETH.config(myIP, myGW, mySN, myDNS); ESP32_W6100_waitForConnect(); /////////////////////////////////// server.on("/", HTTP_GET, [](AsyncWebServerRequest * request) { handleRoot(request); }); server.on("/test.svg", HTTP_GET, [](AsyncWebServerRequest * request) { drawGraph(request); }); server.on("/inline", [](AsyncWebServerRequest * request) { request->send(200, "text/plain", "This works as well"); }); server.onNotFound(handleNotFound); server.begin(); Serial.print(F("HTTP EthernetWebServer is @ IP : ")); Serial.println(ETH.localIP()); } void loop() { }

You can access the Async Advanced WebServer @ the server IP

Debug Terminal Output Samples 1. AsyncMultiWebServer_ESP32_W6100 on ESP32S3_DEV with ESP32_S3_W6100

Following are debug terminal output and screen shots when running example AsyncMultiWebServer_ESP32_W6100 on ESP32S3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demonstrate the operation of 3 independent AsyncWebServers on 3 different ports and how to handle the complicated AsyncMultiWebServers.

Start AsyncMultiWebServer_ESP32_W6100 on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps Connected to network. IP = 192.168.2.92 Initialize multiServer OK, serverIndex = 0, port = 8080 HTTP server started at ports 8080 Initialize multiServer OK, serverIndex = 1, port = 8081 HTTP server started at ports 8081 Initialize multiServer OK, serverIndex = 2, port = 8082 HTTP server started at ports 8082

You can access the Async Advanced WebServers @ the server IP and corresponding ports (8080, 8081 and 8082)

2. Async_AdvancedWebServer_MemoryIssues_Send_CString on ESP32S3_DEV with ESP32_S3_W6100

Following is the debug terminal and screen shot when running example Async_AdvancedWebServer_MemoryIssues_Send_CString, on ESP32S3_DEV with LwIP W6100, to demonstrate the new and powerful HEAP-saving feature

Using CString ===> smaller heap (113,396 bytes) Start Async_AdvancedWebServer_MemoryIssues_Send_CString on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps HTTP EthernetWebServer is @ IP : 192.168.2.92 HEAP DATA - Pre Create Arduino String Max heap: 352132 Free heap: 250428 Used heap: 101704 ... HEAP DATA - Pre Send Max heap: 352132 Free heap: 245624 Used heap: 106508 HEAP DATA - Post Send Max heap: 352132 Free heap: 239164 Used heap: 112968 .. HEAP DATA - Post Send Max heap: 352132 Free heap: 238736 Used heap: 113396 ...

While using Arduino String, the HEAP usage is very large

Async_AdvancedWebServer_MemoryIssues_SendArduinoString ===> very large heap (142,972 bytes) Start Async_AdvancedWebServer_MemoryIssues_SendArduinoString on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps HTTP EthernetWebServer is @ IP : 192.168.2.92 HEAP DATA - Pre Create Arduino String Max heap: 359852 Free heap: 298532 Used heap: 61320 . HEAP DATA - Pre Send Max heap: 359852 Free heap: 254632 Used heap: 105220 HEAP DATA - Post Send Max heap: 359852 Free heap: 215352 Used heap: 142960 HEAP DATA - Post Send Max heap: 359852 Free heap: 215340 Used heap: 142972 .

You can access the Async Advanced WebServers at the displayed server IP, e.g. 192.168.2.92

3. Async_AdvancedWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100

Following is debug terminal output when running example Async_AdvancedWebServer_SendChunked on ESP32S3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use beginChunkedResponse() to send large html in chunks

Start Async_AdvancedWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps AsyncWebServer is @ IP : 192.168.2.92 .[AWS] Total length to send in chunks = 31259 [AWS] Bytes sent in chunk = 5620 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2775 [AWS] Bytes sent in chunk = 0 .[AWS] Total length to send in chunks = 31279 [AWS] Bytes sent in chunk = 5620 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 4300 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2795 [AWS] Bytes sent in chunk = 0

You can access the Async Advanced WebServers @ the server IP

4. AsyncWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100

Following is debug terminal output when running example AsyncWebServer_SendChunked on ESP32S3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use beginChunkedResponse() to send large html in chunks

Start AsyncWebServer_SendChunked on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps AsyncWebServer is @ IP : 192.168.2.92 .[AWS] Total length to send in chunks = 47809 [AWS] Bytes sent in chunk = 5624 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 4300 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2129 [AWS] Bytes sent in chunk = 0 5. Async_WebSocketsServer on ESP32S3_DEV with ESP32_S3_W6100

Following is debug terminal output when running example Async_WebSocketsServer on ESP32S3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use Async_WebSocketsServer feature

Starting Async_WebSocketsServer on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps ws[Server: /ws][ClientID: 1] WSClient connected ws[Server: /ws][ClientID: 1] WSClient disconnected ws[Server: /ws][ClientID: 2] WSClient connected ws[Server: /ws][ClientID: 3] WSClient connected 6. Async_HTTPBasicAuth on ESP32S3_DEV with ESP32_S3_W6100

Following is debug terminal output when running example Async_HTTPBasicAuth on ESP32S3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use Async_Auth feature

Start Async_HTTPBasicAuth on ESP32S3_DEV with ESP32_S3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 11 [AWS] MISO: 13 [AWS] SCK: 12 [AWS] CS: 10 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: FE:ED:DE:AD:BE:EF, IPv4: 192.168.2.92 FULL_DUPLEX, 100Mbps Async_HttpBasicAuth started @ IP : 192.168.2.92 Open http://192.168.2.88/ in your browser to see it working Login using username = admin and password = esp32_W6100 7. Async_AdvancedWebServer_SendChunked on ESP32S2_DEV with ESP32_S2_W6100

Following is debug terminal output when running example Async_AdvancedWebServer_SendChunked on ESP32S2_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use beginChunkedResponse() to send large html in chunks. The built-in MAC address is now used instead of user-defined one.

Start Async_AdvancedWebServer_SendChunked on ESP32S2_DEV with ESP32_S2_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 2 [AWS] MOSI: 35 [AWS] MISO: 37 [AWS] SCK: 36 [AWS] CS: 34 [AWS] INT: 4 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: 7E:DF:A1:08:64:27, IPv4: 192.168.2.132 FULL_DUPLEX, 100Mbps AsyncWebServer is @ IP : 192.168.2.132 .[AWS] Total length to send in chunks = 31259 [AWS] Bytes sent in chunk = 5620 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2775 [AWS] Bytes sent in chunk = 0 .[AWS] Total length to send in chunks = 31279 [AWS] Bytes sent in chunk = 5620 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 4300 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2795 [AWS] Bytes sent in chunk = 0

You can access the Async Advanced WebServers @ the server IP

8. Async_AdvancedWebServer_SendChunked on ESP32C3_DEV with ESP32_C3_W6100

Following is debug terminal output when running example Async_AdvancedWebServer_SendChunked on ESP32C3_DEV with LwIP W6100, using ESP32 core v2.0.0+, to demo how to use beginChunkedResponse() to send large html in chunks. The built-in MAC address is now used instead of user-defined one.

Start AsyncWebServer_SendChunked on ESP32C3_DEV with ESP32_C3_W6100 AsyncWebServer_ESP32_SC_W6100 v1.8.1 for core v2.0.0+ [AWS] Default SPI pinout: [AWS] SPI_HOST: 1 [AWS] MOSI: 6 [AWS] MISO: 5 [AWS] SCK: 4 [AWS] CS: 7 [AWS] INT: 10 [AWS] SPI Clock (MHz): 25 [AWS] ========================= ETH Started ETH Connected ETH MAC: 7C:DF:A1:DA:68:BF, IPv4: 192.168.2.159 FULL_DUPLEX, 100Mbps AsyncWebServer is @ IP : 192.168.2.159 .[AWS] Total length to send in chunks = 47809 [AWS] Bytes sent in chunk = 5624 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 4300 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2129 [AWS] Bytes sent in chunk = 0 [AWS] Total length to send in chunks = 47809 [AWS] Bytes sent in chunk = 5624 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 4300 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 1428 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2864 [AWS] Bytes sent in chunk = 2129 [AWS] Bytes sent in chunk = 0

You can access the Async Advanced WebServers @ the server IP

Debug

Debug is enabled by default on Serial. Debug Level from 0 to 4. To disable, change the ETHERNET_WEBSERVER_LOGLEVEL to 0

// Use this to output debug msgs to Serial #define DEBUG_ASYNC_WEBSERVER_PORT Serial // Use this to disable all output debug msgs // Debug Level from 0 to 4 #define _ASYNC_WEBSERVER_LOGLEVEL_ 0 Troubleshooting

If you get compilation errors, more often than not, you may need to install a newer version of Arduino IDE, the Arduino ESP32 core or depending libraries.

Sometimes, the library will only work if you update the ESP32 core to the latest version because I'm always using the latest cores /libraries.

Issues

Submit issues to: AsyncWebServer_ESP32_SC_W6100 issues

TO DO Fix bug. Add enhancement Add support to more Ethernet shields, such as DP83848, TLK110, IP101, RTL8201, DM9051, KSZ8041, KSZ8081, etc. Add LittleFS support to use with new cores DONE Initial port to ESP32_S2/S3/C3 boards using LwIP W6100 Ethernet. Add more examples. Add debugging features. Add Table-of-Contents and Version String Display compiler #warning only when DEBUG_LEVEL is 3+ Fix AsyncWebSocket bug Support using CString to save heap to send very large data. Check request->send(200, textPlainStr, jsonChartDataCharStr); - Without using String Class - to save heap #8 Add examples Async_AdvancedWebServer_SendChunked and AsyncWebServer_SendChunked to demo how to use beginChunkedResponse() to send large html in chunks Use allman astyle and add utils Add Async_WebSocketsServer, Async_HttpBasicAuth and MQTT examples Remove unused variable to avoid compiler warning and error Contributions and Thanks Based on and modified from Hristo Gochkov's ESPAsyncWebServer. Many thanks to Hristo Gochkov for great ESPAsyncWebServer Library me-no-dev⭐️⭐️ Hristo Gochkov Contributing

If you want to contribute to this project:

Report bugs and errors Ask for enhancements Create issues and pull requests Tell other people about this library License The library is licensed under GPLv3 Copyright

Copyright (c) 2016- Hristo Gochkov

Copyright (c) 2023- Khoi Hoang



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3